
CS4605/Lab 4

George W. Dinolt

August 17, 2004

1 introduction

There are two goals of this lab. The first is to show how to define a “state” and the
“transform functions” of a “system” to move from one state to the next. The other
is to illustrate the layering/abstraction approaches that we will use to describe
many of the policies that we will discuss.

To accomplish these goals, we will extend theseq_theory that we used in
Lab 3. We will do this by “instantiating” the parameters of the theory. Our result
will be a proof that the particularseq that we define issecurewith respect to the
definition of security we provided.

This new theory,triv_state , is still very abstract. As we shall see, there
are still a number of undefined types and operations associated with the theory.

2 Description of the Theory

You can find the theory either here or onproof in
/disk1/cisr/pvs-examples/lab4/triv state.pvs . 1

In the sections below, we provide some description of the various parts of the
theory.

2.1 The Parameters of the Theory

In Figure 1 we show the paramaters the we need to describe the system. Any
implementationof the system will have to provide these parameters.

1This is ahot-link that points to
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Summer/CS4605/Labs/lab4/trivstate.pvs

1

http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Summer/CS4605/Labs/lab4/triv_state.pvs
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Summer/CS4605/Labs/lab4/triv_state.pvs


CS4605-Lab 3 2 DESCRIPTION OF THE THEORY

triv state[ T : TYPE+, inNets: TYPE+, out-
Nets: TYPE+, SL: TYPE+, read:

[ T → inNets], write: [ T → outNets], slIn:
[ inNets → SL], slOut: [ outNets → SL]]: THEORY

Figure 1: The Parameters for the trivsystem

T is the type of element that is read frominNets and written tooutNets

inNets is some way of describing the input networks. We do not ascribe any
sequencing properties to these at this level

outNets is similar toinNets

read is a function that associates a particularinNet with an element.2

write is a function that associates a particularoutNet with an element.3

slin, slout associate a security label with each input and output network.

An interesting observation about this theory is that there is no definition of
the “meaning” of eitherread or write. Of course we have no notion of how the
networks are implemented, only that each element wasread from a uniqe network
andwritten to a unique network.

2.2 The Definitions and Internal Lemmas

In Figure 2 we show how theState : Exp is defined, whatst? means on the
State : Exp and howtransform works.

TheState : Exp is modeled as a “tuple” or “record” that consists of

• An element ofT to be processed, theiu,4

• The input nework,inputNet that is part of this state and

2As a consequence of this definition, each element ofT is asociated with exactly one input
network.

3Here again, each element ofT will be written out on exactly one output network.
4The nameiu is used forInformation unit, which is a name inherited from other projects I have

worked on.

2 G. W. Dinolt



CS4605-Lab 3 2 DESCRIPTION OF THE THEORY

BEGIN

State: TYPE =
[# iu: T ,

inputNet: inNets,
outputNet: outNets #]

i: VAR inNets

x: VAR T

st: VAR State

transform( x, st): State =
IF slIn( read( x)) = slOut( write( x))

THEN (# iu := x,
inputNet := read( x),
outputNet := write( x) #)

ELSE st
ENDIF

st?( st: State): bool =
slIn( st‘ inputNet) = slOut( st‘ outputNet) ∧

st‘ inputNet = read( st‘ iu) ∧
st‘ outputNet = write( st‘ iu)

transformSecure: LEMMA

st?( st) ⇒ st?( transform( x, st))

Figure 2: The Definitions for the trivstate Specification

3 G. W. Dinolt



CS4605-Lab 3 2 DESCRIPTION OF THE THEORY

• The output network,outputNet that is part of this state.

The var’s that are defined,i, x, andst, are there so that I don’t have to use
forall5 in the definitions and lemmas below. Whenever a variable appears in such
places, it means that the entity is defined for every value of the variable.

The definition of thetransform function is relatively straightforward. For
any elementx ∈ T and anyst ∈ State, we “transform” thest to a newState :
Exp by following the rules. If the security label of theinputNet is the same as
the security label of theouputNet then construct a state element consisting of the
elementx, theinputNet and theoutputNet. Otherwise use the old state. Note,
that theState : Exp does not normally depend on past states.

The definition of the functionst? (secure state ?) is similarly straightfor-
ward. We ensure that the element wasread from the inputNet and written
to theoutputNet and that the labels of the neworks agree.

You have to prove thetransformSecure lemma, that the transform of a se-
cure state is secure.

2.3 Defining a Sequence and the Layering

Finally we get to the gist of the matter, illustrating the layering techniques. This
is shown in Figure 3. To useseq_theory , we have to have a sequence. But
to get that, we need a sequence of elements ofT to process.InputSeq is such a
sequence. Note that it specifies some unbounded sequence of elements ofT . We
don’t know what the elements are, but we don’t really care.

The sequence ofState : Exps is now defined in terms of the sequence of
elements ofT . The goal of the functionseqState is to define such a sequence. We
do it recursively using thetransform function defined above. TheMEASURE
is required to show pvs which variable is involved in the recursion.

Finally, we have to establish thatseqState(0) is secure. We do this the easy
way by justassumingit, using theAXIOM command ofPVS

We now get to the laying concept. TheIMPORTINGcommand ofPVSallows
us to import another specification. You can look up the command in thePVS
Language Reference Manualthat you can downlowd from their web site. In
theIMPORTINGline we reference theseq_theory and each of its parameters.
You should verify that the parameters are correct and of the right type.

Since we are importingseq_theory we must ensure that each of its as-
sumptions is met by the parameters that we are substituting. When you generate

5Remember the mathematical symbol for this is “∀.”

4 G. W. Dinolt

http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf


CS4605-Lab 3 2 DESCRIPTION OF THE THEORY

InputSeq: sequence[ T ]

seqState( n: nat): RECURSIVE State =
IF n = 0

THEN (# iu := InputSeq( 0),
inputNet := read( InputSeq( 0)),
outputNet := write( InputSeq( 0)) #)

ELSE transform( InputSeq( n), seqState( n− 1))
ENDIF

MEASURE n

InputSeq0 secure: AXIOM st?( seqState( 0))

IMPORTING seqtheory[ State, T , seqState, st?, transform]

InputSeqsecure: THEOREM

every( st?)( seqState)

END triv state

Figure 3: The Lemmas and the Layering in trivstate

5 G. W. Dinolt



CS4605-Lab 3 3 THE ACTUAL DETAILS OF THE LAB

Proof summary for theory triv_state
transformSecure.......................untried [Untried]( n/a s)
seqState_TCC1.........................proved - complete [shostak](0.56 s)
seqState_TCC2.........................proved - complete [shostak](0.03 s)
IMP_seq_theory_TCC1...................unfinished [shostak](0.12 s)
IMP_seq_theory_TCC2...................proved - incomplete [shostak](0.18 s)
IMP_seq_theory_TCC3...................proved - incomplete [shostak](0.58 s)
InputSeq_secure.......................untried [Untried]( n/a s)
Theory totals: 7 formulas, 5 attempted, 4 succeeded (1.47 s)

Figure 4: The output of theESC-x prove-tccs-theory command

the tccs for the triv_state theory, you will find out that each of the assump-
tions fromseq_theory becomes atcc for triv_state . For the importation
to be correct, we need to be able to prove each of these assumptions. In this case,
the proofs are trivial (almost).

Once we have importedseq_theory , the final theorem is literally a trivial-
ity.

3 The Actual Details of the Lab

3.1 The steps of the labs

The actual details of the lab are relatively straightforward. You should obtain
the pvs file fortriv_state either from the web site or fromproof as de-
scribed above. You should place the file in the same directory that you have the
seq_theory specification.

You need to ensure that you did the proofs ofseq_theory in this directory.
If you didn’t, you should redo them now.

You should generate thetccs for triv_state and the commandESC-x
prove-tccs-theory 6 to try and prove thetccs for the theory. The output
should like similar to that shown in Figure 4. You will find that all but one of
the will be proved. Only one will be “unfinished.” The steps below can be used
to prove the last one. Make sure that your cursor is in the pvs file and issue the
ESC-x tccs command. The output you see should be similar to that shown in

6Remember that the notationESX-x means type the ESC key and then the “x” key. Ignore the
“-”

6 G. W. Dinolt



CS4605-Lab 3 3 THE ACTUAL DETAILS OF THE LAB

Figure 5. Move your cursor into thetccs buffer and to the area where the unfin-
ished tcc is located. You should note that it is an assumption aboutseqState(0).
Issue the commandESC-x prove and attempt to prove this using (note the verb
here) anything you might know aboutseqState(0) from the specification.

Once this proof is completed, issue theESC-x tccs command again, from
within the triv_state.pvs buffer, to see that all the tccs are now marked
“completed,” even the ones that were marked “incomplete.” You should study the
tccs. Note that 3 of them correspond to theassumptionsthat must be satisfied by,
seq_theory .

You shoud now prove thetransformSecure lemma. You can prove this using
only the commands

skolem!, expand, flatten, and split

If you find yourself with equations in the consequent (below the line), you
may want to try the commandlift-if . There is a somewhat longer proof that
uses this command. The lemma itself, is actually pretty trivial.

Finally you need to prove the theoremInputSeq Secure. The only thing you
need to do is to use the theorem fromseq_theory .

3.2 What you will turn in

After you have completed the work described above, you should run the command
ESX-x show-proofs-importchain while your cursor is in thetriv state.pvs
buffer. You should insert your name and the lab number in the top of the buffer,
save it, print it and hand it in. The output will show a form of the proofs (in lisp
notation) and the state of the theory.

Good Luck

7 G. W. Dinolt



CS4605-Lab 3 3 THE ACTUAL DETAILS OF THE LAB

% Subtype TCC generated (at line 33, column 41) for n - 1
% expected type nat

% proved - complete
seqState_TCC1: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 33, column 32) for seqState(n - 1)
% proved - complete

seqState_TCC2: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;

% Assuming TCC generated (at line 39, column 12) for
% seq_theory[State, T, seqState, st?, transform]
% generated from assumption seq_theory.seq_0_secure

% unfinished
IMP_seq_theory_TCC1: OBLIGATION st?(nth[State](seqState, 0));

% Assuming TCC generated (at line 39, column 12) for
% seq_theory[State, T, seqState, st?, transform]
% generated from assumption seq_theory.transition_state_secure

% proved - incomplete
IMP_seq_theory_TCC2: OBLIGATION

FORALL (st: State), (x: T): st?(st) => st?(transform(x, st));

% Assuming TCC generated (at line 39, column 12) for
% seq_theory[State, T, seqState, st?, transform]
% generated from assumption seq_theory.seq_transform

% proved - incomplete
IMP_seq_theory_TCC3: OBLIGATION

FORALL (n: nat):
EXISTS (x: T):

nth[State](seqState, n + 1) = transform(x, nth[State](seqState, n));

Figure 5: The output of theESC-x tccs command after trying to do the proofs.

8 G. W. Dinolt


	introduction
	Description of the Theory
	The Parameters of the Theory
	The Definitions and Internal Lemmas
	Defining a Sequence and the Layering

	The Actual Details of the Lab
	The steps of the labs
	What you will turn in


